
Package: shattering (via r-universe)
September 14, 2024

Title Estimate the Shattering Coefficient for a Particular Dataset

Version 1.0.7

Description The Statistical Learning Theory (SLT) provides the
theoretical background to ensure that a supervised algorithm
generalizes the mapping f:X -> Y given f is selected from its
search space bias F. This formal result depends on the
Shattering coefficient function N(F,2n) to upper bound the
empirical risk minimization principle, from which one can
estimate the necessary training sample size to ensure the
probabilistic learning convergence and, most importantly, the
characterization of the capacity of F, including its under and
overfitting abilities while addressing specific target
problems. In this context, we propose a new approach to
estimate the maximal number of hyperplanes required to shatter
a given sample, i.e., to separate every pair of points from one
another, based on the recent contributions by Har-Peled and
Jones in the dataset partitioning scenario, and use such
foundation to analytically compute the Shattering coefficient
function for both binary and multi-class problems. As main
contributions, one can use our approach to study the complexity
of the search space bias F, estimate training sample sizes, and
parametrize the number of hyperplanes a learning algorithm
needs to address some supervised task, what is specially
appealing to deep neural networks. Reference: de Mello, R.F.
(2019) ``On the Shattering Coefficient of Supervised Learning
Algorithms'' <arXiv:1911.05461>; de Mello, R.F., Ponti, M.A.
(2018, ISBN: 978-3319949888) ``Machine Learning: A Practical
Approach on the Statistical Learning Theory''.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1.9001

Imports FNN, pdist, slam, grDevices, Ryacas, rmarkdown, pracma, e1071,
graphics, NMF, stats

Suggests testthat

1

https://arxiv.org/abs/1911.05461

2 apply_classifier

NeedsCompilation no

Author Rodrigo F. de Mello [aut, cre]
(<https://orcid.org/0000-0002-0435-3992>)

Maintainer Rodrigo F. de Mello <mellorf@gmail.com>

Date/Publication 2021-08-21 13:50:02 UTC

Repository https://mellorf.r-universe.dev

RemoteUrl https://github.com/cran/shattering

RemoteRef HEAD

RemoteSha 0ba348d25ac129d4884fe4696f506b55195bbadd

Contents
apply_classifier . 2
build_classifier . 3
complexity_analysis . 4
compress_space . 6
equivalence_relation . 6
estimate_number_hyperplanes . 7
number_regions . 8
shattering . 9

Index 10

apply_classifier Apply a classifier induced with function build_classifier

Description

This function applies the set of SVM classifiers to perform the supervised learning task based on
the topological data analysis

Usage

apply_classifier(model, X, only.best.classifiers = FALSE)

Arguments

model model built using function build_classifier

X matrix defining the input space of your test set
only.best.classifiers

if TRUE, only the most performing classification functions will be considered

Value

prediction results

https://orcid.org/0000-0002-0435-3992

build_classifier 3

References

de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" arXiv:https:
//arxiv.org/abs/1911.05461

de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Ap-
proach on the Statistical Learning Theory"

build_classifier Produce a set of SVM classifiers

Description

This function outputs a set of SVM classifiers to perform the supervised learning task based on the
topological data analysis

Usage

build_classifier(
X,
Y,
train.size = 0.7,
quantile.percentage = 1,
min.points = 3,
gamma.length = 50,
cost = 10000,
weights = c(0.25, 0.75),
best.stdev.purity = 0

)

Arguments

X matrix defining the input space of your dataset

Y numerical vector defining the output space (labels/classes) of your dataset

train.size fraction of examples used for training
quantile.percentage

real number to define the quantile of distances to be considered (e.g. 0.1 means
10%)

min.points minimal number of examples per classification region of the input space

gamma.length number of possible gamma parameters to test the radial kernel for SVM

cost the cost for the SVM optimization

weights weights to be used in our SVM optimization
best.stdev.purity

the stdev to compute data purity

https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461

4 complexity_analysis

Value

A list of classifiers composing the final classification model

References

de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" arXiv:https:
//arxiv.org/abs/1911.05461

de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Ap-
proach on the Statistical Learning Theory"

Examples

require(NMF)
#
X = cbind(rnorm(mean=-1, sd=1, n=200), rnorm(mean=-1, sd=1, n=200))
X = rbind(X, cbind(rnorm(mean=1, sd=1, n=200), rnorm(mean=1, sd=1, n=200)))
Y = c(rep(-1,200), rep(+1,200))
plot(X, col=Y+2, pch=20, cex=3, cex.axis=2)
#
model = build_classifier(X, Y, train.size=0.5, quantile.percentage=1,
min.points=10, gamma.length=15, cost=10000)
result = apply_classifier(model, X)
points(X, col=as.numeric(result$classification.ensembled)+2, pch=20, cex=1.5)
#
x = seq(min(X), max(X), length=100)
z = outer(x, x, function(x,y) {
apply_classifier(model, as.matrix(cbind(x,y)))$classification.ensembled })
filled.contour(x,x,z)
#
x = seq(min(X), max(X), length=100)
z = outer(x, x, function(x,y) {
apply_classifier(model, as.matrix(cbind(x,y)),
only.best.classifiers=TRUE)$classification.ensembled })
locator(1)
filled.contour(x,x,z)

complexity_analysis Produce a PDF report analyzing the lower and upper shattering coef-
ficient functions

Description

Full analysis on the lower and upper shattering coefficient functions for a given supervised dataset

https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461

complexity_analysis 5

Usage

complexity_analysis(
X = NULL,
Y = NULL,
my.delta = 0.05,
my.epsilon = 0.05,
directory = tempdir(),
file = "myreport",
length = 10,
quantile.percentage = 0.5,
epsilon = 1e-07

)

Arguments

X matrix defining the input space of your dataset
Y numerical vector defining the output space (labels/classes) of your dataset
my.delta upper bound for the probability of the empirical risk minimization principle (in

range (0,1))
my.epsilon acceptable divergence between the empirical and (expected) risks (in range (0,1))
directory directory used to generate the report for your dataset
file name of the PDF file to be generated (without extension)
length number of points to divide the sample while computing the shattering coefficient
quantile.percentage

real number to define the quantile of distances to be considered (e.g. 0.1 means
10%)

epsilon a real threshold to be removed from distances in order to measure the open balls
in the underlying topology

Value

A list including the number of hyperplanes and the shattering coefficient function. A report is
generated in the user-defined directory.

References

de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" arXiv:https:
//arxiv.org/abs/1911.05461

de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Ap-
proach on the Statistical Learning Theory"

Examples

Analyzing the complexity of the shattering coefficients functions
(lower and upper bounds) for the Iris dataset
require(datasets)
complexity_analysis(X=as.matrix(iris[,1:4]), Y=as.numeric(iris[,5]))

https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461

6 equivalence_relation

compress_space Function to compress the space based on the equivalence relations.

Description

This function compresses the input space according to the equivalence relations, i.e., it compresses
whenever an example has other elements inside its open ball but having the same class label as the
ball-centered instance.

Usage

compress_space(M, Y)

Arguments

M sparse matrix representing all equivalence relations

Y numerical vector indentifying the output space of variables

Value

A list containing sparse vectors (from package slam) identifying the equivalence relations

equivalence_relation Function to compute equivalence relations among input space points.

Description

This function computes the greatest as possible open ball connecting a given input example to every
other under the same class label, thus homogeneizing space regions.

Usage

equivalence_relation(
X,
Y,
quantile.percentage = 1,
epsilon = 0.001,
chunk = 250

)

estimate_number_hyperplanes 7

Arguments

X matrix indentifying the input space of variables

Y numerical vector indentifying the output space of variables
quantile.percentage

real number to define the quantile of distances to be considered (e.g. 0.1 means
10%)

epsilon a real threshold to be removed from distances in order to measure the open balls
in the underlying topology

chunk number of elements to compute the Euclidean distances at once (if you set a
large number, you might have memory limitations to perform the operations)

Value

A list with the equivalence relations in form of a list

estimate_number_hyperplanes

Function to estimate the number of hyperplanes required to classify
such a data sample.

Description

This function estimates the number of hyperplanes

Usage

estimate_number_hyperplanes(
X,
Y,
length = 20,
quantile.percentage = 0.05,
epsilon = 1e-07

)

Arguments

X matrix indentifying the input space of variables

Y numerical vector indentifying the output space of variables

length number of data points used to estimate the shattering coefficient
quantile.percentage

real number to define the quantile of distances to be considered (e.g. 0.1 means
10%)

epsilon a real threshold to be removed from distances in order to measure the open balls
in the underlying topology

8 number_regions

Value

A data frame whose columns are: (1) the original sample size; (2) the reduced sample size after
connecting homogeneous space regions; (3) the lower bound for the number of hyperplanes required
to shatter the input space; and (4) the upper bound for the number of hyperplanes required to shatter
the input space

Examples

Generating some random dataset with 2 classes:
50 examples in class 1 and 50 in class 2 (last column)
data = cbind(rnorm(mean=1, sd=1, n=50), rnorm(mean=1, sd=1, n=50), rep(1, 50))
data = rbind(data, cbind(rnorm(mean=-1, sd=1, n=50), rnorm(mean=-1, sd=1, n=50), rep(2, 50)))

Building up the input and output sets
X = data[,1:2]
Y = data[,3]

Plotting our dataset using classes as colors
plot(X, col=Y, main="Original dataset", xlab="Attribute 1", ylab="Attribute 2")

Here we estimate the number of hyperplanes required to shatter (divide) the given sample
in all possible ways according to the organization of points in the input space
Hyperplanes = estimate_number_hyperplanes(X, Y, length=10, quantile.percentage=0.1, epsilon=1e-7)

number_regions Computes the maximal number of space regions

Description

This function computes the maximal number of regions an R^n space can be divided using m
hyperplanes

Usage

number_regions(m, n)

Arguments

m number of hyperplanes

n space dimensionality

Value

Maximal number of space regions

shattering 9

References

de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" arXiv:https:
//arxiv.org/abs/1911.05461

de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Ap-
proach on the Statistical Learning Theory"

https://onionesquereality.wordpress.com/2012/11/23/maximum-number-of-regions-in-arrangement-
of-hyperplanes/

Examples

number_regions(m=2, n=2)

shattering shattering: A package to estimate the shattering coefficient for labeled
data samples.

Description

Description: The Statistical Learning Theory (SLT) provides the theoretical background to ensure
that a supervised algorithm generalizes the mapping f:X -> Y given f is selected from its search
space bias F. This formal result depends on the Shattering coefficient function N(F,2n) to upper
bound the empirical risk minimization principle, from which one can estimate the necessary train-
ing sample size to ensure the probabilistic learning convergence and, most importantly, the charac-
terization of the capacity of F, including its under and overfitting abilities while addressing specific
target problems. In this context, we propose a new approach to estimate the maximal number of hy-
perplanes required to shatter a given sample, i.e., to separate every pair of points from one another,
based on the recent contributions by Har-Peled and Jones in the dataset partitioning scenario, and
use such foundation to analytically compute the Shattering coefficient function for both binary and
multi-class problems. As main contributions, one can use our approach to study the complexity of
the search space bias F, estimate training sample sizes, and parametrize the number of hyperplanes
a learning algorithm needs to address some supervised task, what is specially appealing to deep
neural networks. Reference: https://arxiv.org/abs/1911.05461

References

de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" arXiv:https:
//arxiv.org/abs/1911.05461

de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Ap-
proach on the Statistical Learning Theory"

Shattering functions

This packages comes with functions to estimate the shattering coefficient.

https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461
https://arxiv.org/abs/1911.05461

Index

∗ analysis
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ coefficient
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ complexity
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ compress
compress_space, 6

∗ dataset
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ equivalence
equivalence_relation, 6

∗ estimate
estimate_number_hyperplanes, 7

∗ for
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ hyperplanes
estimate_number_hyperplanes, 7

∗ number
estimate_number_hyperplanes, 7

∗ of
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4

number_regions, 8
∗ relation

equivalence_relation, 6
∗ shattering

apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ some
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

∗ space
compress_space, 6

∗ the
apply_classifier, 2
build_classifier, 3
complexity_analysis, 4
number_regions, 8

apply_classifier, 2

build_classifier, 3

complexity_analysis, 4
compress_space, 6

equivalence_relation, 6
estimate_number_hyperplanes, 7

number_regions, 8

shattering, 9

10

	apply_classifier
	build_classifier
	complexity_analysis
	compress_space
	equivalence_relation
	estimate_number_hyperplanes
	number_regions
	shattering
	Index

