Package: shattering 1.0.7
shattering: Estimate the Shattering Coefficient for a Particular Dataset
The Statistical Learning Theory (SLT) provides the theoretical background to ensure that a supervised algorithm generalizes the mapping f:X -> Y given f is selected from its search space bias F. This formal result depends on the Shattering coefficient function N(F,2n) to upper bound the empirical risk minimization principle, from which one can estimate the necessary training sample size to ensure the probabilistic learning convergence and, most importantly, the characterization of the capacity of F, including its under and overfitting abilities while addressing specific target problems. In this context, we propose a new approach to estimate the maximal number of hyperplanes required to shatter a given sample, i.e., to separate every pair of points from one another, based on the recent contributions by Har-Peled and Jones in the dataset partitioning scenario, and use such foundation to analytically compute the Shattering coefficient function for both binary and multi-class problems. As main contributions, one can use our approach to study the complexity of the search space bias F, estimate training sample sizes, and parametrize the number of hyperplanes a learning algorithm needs to address some supervised task, what is specially appealing to deep neural networks. Reference: de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" <arxiv:1911.05461>; de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Approach on the Statistical Learning Theory".
Authors:
shattering_1.0.7.tar.gz
shattering_1.0.7.zip(r-4.5)shattering_1.0.7.zip(r-4.4)shattering_1.0.7.zip(r-4.3)
shattering_1.0.7.tgz(r-4.4-any)shattering_1.0.7.tgz(r-4.3-any)
shattering_1.0.7.tar.gz(r-4.5-noble)shattering_1.0.7.tar.gz(r-4.4-noble)
shattering_1.0.7.tgz(r-4.4-emscripten)shattering_1.0.7.tgz(r-4.3-emscripten)
shattering.pdf |shattering.html✨
shattering/json (API)
# Install 'shattering' in R: |
install.packages('shattering', repos = c('https://mellorf.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:0ba348d25a. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:apply_classifierbuild_classifiercomplexity_analysiscompress_spaceequivalence_relationestimate_number_hyperplanesnumber_regions
Dependencies:base64encBiobaseBiocGenericsBiocManagerbslibcachemclasscliclustercodetoolscolorspacedigestdoParallele1071evaluatefansifarverfastmapFNNfontawesomeforeachfsgenericsggplot2gluegridBasegtablehighrhtmltoolsisobanditeratorsjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeNMFpdistpillarpkgconfigplyrpracmaproxyR6rappdirsRColorBrewerRcppregistryreshape2rlangrmarkdownrngtoolsRyacassassscalesslamstringistringrtibbletinytexutf8vctrsviridisLitewithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Apply a classifier induced with function build_classifier | apply_classifier |
Produce a set of SVM classifiers | build_classifier |
Produce a PDF report analyzing the lower and upper shattering coefficient functions | complexity_analysis |
Function to compress the space based on the equivalence relations. | compress_space |
Function to compute equivalence relations among input space points. | equivalence_relation |
Function to estimate the number of hyperplanes required to classify such a data sample. | estimate_number_hyperplanes |
Computes the maximal number of space regions | number_regions |
shattering: A package to estimate the shattering coefficient for labeled data samples. | shattering |